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Biittiker and Landauer studied scattering off an oscillating rectangular barrier 
in order to shed light on the time aspects of tunneling. The expression for the 
traversal time resulting from this study is controversial. In addition, doubts have 
recently been expressed on technical aspects of their work. In an attempt to 
clarify these issues, we investigate a generalization of their model to arbitrary 
oscillating barriers, V(x, t)= Vo(x)+ Vl(x)cos cJt. In the process, we confirm 
that Bfittiker and Landauer's work is technically sound. However, we show, by 
several examples, that no direct general relation exists between the characteristic 
frequency of an oscillating barrier and the duration of the tunneling process. 
For a wide range of realistic parameters this characteristic frequency does not 
even exist. 

KEY WORDS: Tunneling; oscillating barriers; duration of tunneling; charac- 
teristic frequency. 

1. I N T R O D U C T I O N  

Dur ing  the last decade, new techniques, such as molecular  beam epitaxy 

(MBE),  have made possible the fabricat ion of essentially one-dimensional  
semiconductor  structures on a nanome te r  scale. The potent ial  device 
applicat ions of configurat ions in which tunnel ing  processes play a crucial 

role (see, e.g., ref. 1) have given urgency to the need for a reliable kinetic 
theory for the charge carriers in such systems. Basic to a kinetic theory of 
this k ind is an unders tand ing  of the fundamenta l  processes involved. In  

part icular ,  one would like to know how long the tunne l ing  process takes, 
and what  the characteristic frequency is when tunnel ing  particles couple to 
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phonons, which typically constitute the heat bath in this context. These 
questions, elementary as they may seem, have been controversial in recent 
years. 

As a device for studying the time aspects of tunneling, Biittiker and 
Landauer introduced ~z'3) the following simple model: A plane wave with 
energy E impinges on a rectangular barrier on the x interval (-d/2,  d/2) 
in one dimension. To the constant barrier height V0 is added an oscillating 
component V1 cos cot. The particles interacting with such a barrier can 
absorb or emit modulation quanta he). One can think of this model as a 
rough caricature of tunneling electrons coupled in the barrier to optical 
phonons of fixed frequency. Natural questions are: ( i )What  are the 
amplitudes A+l(co) and B_+~(co) of the first sidebands (with energies 
E++_hco) for transmitted and reflected particles? (i i)What is the charac- 
teristic frequency separating the low-frequency regime, when particles 
essentially "see" the instantaneous barrier, from the high-frequency regime, 
when large deviations from this picture manifest themselves? (iii)What 
conclusions can be drawn about the duration of the tunneling process on 
the basis of the results found? Biittiker and Landauer ~2~) answered the first 
question for a general rectangular barrier, and discussed the second 
explicitly for opaque ones. Finally, on the basis of their results, they 
proposed that the duration of the tunneling process is given by the first 
sideband amplitudes in the co ~ 0 limit. For easy reference, some of 
Biittiker and Landauer's results are collected in Appendix A. 

In the recent controversy over tunneling times, 3 the intriguing results 
of Btittiker and Landauer have played a central role. They raise two types 
of problems. The first type is purely technical: Does it make sense to 
expand in what seems to be V~/hco, retain only the first-order terms, and 
take seriously the resulting ( n ~ 0  limit? Is the treatment of the 
time-dependent problem at all consistent? (5) 

We shall give reassuring answers to these questions. For the 
generalized oscillating barrier V(x, t) = Vo(x) + Vt(x) cos cot where Vo(x) 
and Vl(X) are arbitrary functions on the interval (-d/2,  d/2), we show in 
Section 2 how to obtain the co ~ 0 limit directly. For finite-frequency 
results, one is, however, forced to go back to the perturbation scheme 
introduced by Bfittiker and Landauer. (3) The mechanics of this scheme is 
investigated in Appendix B, and it is found to be well behaved. In addition, 
the c o ~ 0  limit is studied to O(V~). It is shown to coincide with that 
obtained directly in Section 2 for arbitrary barriers. The O(co) terms are, in 
general, very complicated, and will only be briefly commented upon. 

The second type of problem raised by Bfittiker and Landauer's work 
is one of interpretation. In a separate publication, (61 we have critically 

3 See refs. 4-6 for reviews with extensive lists of references. 
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reviewed the various proposals for tunneling times and discussed their 
interrelations. In the present paper we shall restrict ourselves to scrutiny of 
oscillating barriers and their bearing on the tunneling time issue. The 
general connection between the complex "times" introduced by Sokolovski 
and Baskin ~7) and the sidebands of oscillating barriers is given in Section 2. 
In Section 3 we explore the proposed relationship between the charac- 
teristic frequency separating the low- and high-frequency regimes and the 
duration of the tunneling process. As a contrast to the opaque barriers 
studied in refs. 2 and 3, we investigate transparent ones. The results show 
that the "times" characterizing the low-frequency amplitudes are, in 
general, different from those governing the sideband asymmetry. For the 
special case of an oscillating 6-function barrier, the complete o~ dependence 
of the sideband amplitudes is determined to O(VI). A finite characteristic 
frequency is found. Since the duration of the tunneling process clearly 
vanishes in this case, the example shows that no simple relation exists 
between (he duration of tunneling and the characteristic frequency of 
oscillating barriers. 

With realistic parameters in a GaAs/A1GaAs/GaAs structure we find 
that, except for very thin barriers, the characteristic frequency ~o c is only 
well defined for barrier widths d>~h[2(Vo-E)/m]l/Z/E. This means that 
~oc is not defined for most barriers of practical interest. 

We close by a summary, and some comments on the Bfittiker- 
Landauer times. 

2. SCATTERING OFF AN A R B I T R A R Y  OSCILLATING BARRIER 

In this section we generalize Bi.ittiker and Landauer's work on oscil- 
lating barriers to barriers of arbitrary shape," V(x, t)= Vo(x)+ Vl(x) cos ~ot 
on the interval (-d/2, d/2) (see Fig. 1). Section2.1 contains the basics, 
whereas a formal treatment of the ~o ~ 0 limit is presented in Section 2.2. 
A detailed discussion of the perturbation scheme, valid for arbitrary ~0, is 
relegated to Appendix B. In Section 2.3 the connection to Sokolovski and 
Baskin's work is pointed out. 

2.1. Basics 

An incoming particle of energy E interacting with an oscillating barrier 
can absorb or emit modulation quanta h~o. The solution of the time- 
dependent Schr6dinger equation 

ih ~t ~(x, t)= H(x, t) ~(x, t) (2.1) 

a One could also generalize to a set of frequencies ~oi in a straightforward manner, but from 
our present perspective the results would not be particularly illuminating. Note also that the 
phase of cos ~ t  is arbitrary. We choose it as zero for convenience. 
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Vo(x) 

f ~  

V~ (x)cos wt 

E+ T~uJ < ---> E+lh~J 
>E < E 
E- hw < --> E-1~w 

I II I III 
I x 

-d/2 d/2 

Fig. 1. The arbitrary scattering potential Vo(x) + Vl(x ) cos e~t. The solid line represents the 
static part Vo(x) and the dashed lines represent the perturbation V~(x)cos o3t. The potential 
is confined to region II, Ix[ < d/2. A particle incident from the left with energy E is reflected 
or transmitted at energies E+_ nhex The figure shows the first sidebands only. 

for a plane wave scattered off an arbitrary oscillating barrier must therefore 
have the general form (3) 

~(x, t) = ~ On(x) e (i/h)(E+ nho~)t (2.2) 
n 

The stationary solutions 0n at energy E+nhco must be plane waves in 
regions I and III of Fig. 1 (outgoing waves only, except when n = 0). The 
form of the solutions in region II must be determined in successive 
approximations. We write it as 

On(x) = CnY-n(x) + DnF,(x) (2 .3)  

where, to zeroth order in V 1 ,  ~-.,~n(X) and Fn(x) are eigenfunctions of the 
Hamiltonian Ho=-h2/2m(O2/Ox2)+ Vo(x). With (2.2), the Schr6dinger 
equation (2.1) reads 

(E + nho~) On(x) e -(i/h)(~+"h~ 
n 

* ~ te On(x) (2.4) 

Since this equation must hold at all times, we have 

[ H o -  ( E +  nhco)] On = --1Vl(X)EOn+l Jr- On l] (2.5) 

Similarly, the standard boundary conditions (of continuity of the wave 
function and its derivative at x = +d/2) must hold for each component 0n 
separately. This determines the amplitudes B n and An of the plane wave 
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solutions in regions I and III, and the amplitudes C, and D, of (2.3) in 
region II. 

The infinite set of coupled, time-independent equations (2.5) and the 
corresponding matching conditions are thus seen to be straightforward 
consequences of the time-dependent Schr6dinger equation (contrary to 
claims made in ref. 5). They mildly generalize the equations used by 
Biittiker and Landauer, c3~ and form the basis of our work. 

2.2 .  T h e  • - ,  0 L i m i t  

In order to discuss the co-* 0 limit of the problem at hand, it is 
convenient essentially to reverse the step of (2.2) by introduction of the 
discrete Fourier transform 

qS(x, s ) = ~  ~bn(x ) e -i"~ (2.6) 
n 

This turns (2.5) into 

[ H  o + Vl(x) cos s - E l  qS(x, s) = ihco -~s q~(x, s) (2.7) 

Since substitution of s = cot confirms that (2.7) is equivalent to the original 
time-dependent Schr6dinger equation (2.1), this is not particularly useful in 
general. 

However, when the ~o--, 0 limit is taken on (2.7), the right-hand side 
vanishes, and one is left with a stationary scattering problem at energy E 
and with the potential V(x) = Vo(x) + V d x )  cos s. The corresponding solu- 
tion q~(0) (where the superscript refers to the co --* 0 limit) can be viewed as 
a functional of the form of the barrier (in addition to depending explicitly 
on x, of course): 

r176 s) = ~o[ Vo(x) + Vl(X) cos s] (2.8) 

The inverse transform is (n >/0) 

P ~  d s  . 

+n(x) = J_~ ~ e •  Vo(X) + vl(x) cos s] 

U ds 
-- j - - c o s  ns ~bo[Vo(x ) + Vl(x ) cos s] 

_~ 2zc 

= ~ d/2 dxl ... r d/2 dxn 2 " n  ! 

+ o(G(x)  "+2) 

6"O0[Vo(X)] 
6 V ( x l ) . . .  6 V(x,)  

(2.9) 
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where the functional derivative can be defined as 

f N (~0 
6(% = l i r a  • U(xj) (2.10) dx U(x) 6V(x) ~V(xj) 

j = l  

With our choice of phase for cos cot, we have used that cos s is an even 
function of s, and as a result, the sidebands, phase factors included, are 
symmetric in _ n in the co ~ 0 limit. 

Outside the barrier region, the wave functions are the plane waves, 
and in the co ~ 0 limit we have 

OI,(x)_ =B+_,e(~ - i kx .  ,.oeikX (2.11) 

III __ (0) ikx O+,(x) -A+_,e (2.12) 

Thus, (2.9) directly gives the sideband amplitudes for transmitted particles 
in the co ~ 0 limit as 

I 
~ ds 

A (~ - ~cosnsAo[Vo(x )+  Vl(x) coss] ++n-- 

fd/2 fd/2 VI(X1) . . .  Vl(Xn) 6nAo[Vo(x)] 
= dxl dxn 

O--d/2 "''o d/2 2nn! 6V(xl) . . .6V(x, )  

+ o(v~(x) n+2) (2.13) 

The result for the reflected sidebands is analogous, with B replacing A. 
The above procedure for obtaining the co ~ 0 limit is essentially a 

formal version of the intuitive argument used in ref. 3 for the rectangular 
barrier. It has the advantage of producing compact  general results in a 
straightforward manner. Explicit results for the special case of an oscil- 
lating f-function barrier are found in Section 3. 

For  results beyond the co ~ 0  limit, one must return to the set of 
equations (2.5). Since it is the oscillating part  of the barrier, Vl(X), which 
couples these equations, it is natural to try a perturbation series in powers 
of V1. This scheme, introduced in ref. 3 for rectangular barriers, is studied 
in Appendix B. There we construct a general proof that the inhomogeneity 
in equations of the form (2.5), at every level of approximation, does not 
contain solutions of the corresponding homogeneous equation. This con- 
stitutes a proof  that the perturbation scheme is well behaved. Furthermore, 
even though the dimensionless parameter  appears (3) to be V~/hco, in reality 
it is VIlE or V~/(V o - E), and we show that the co -~ 0 limit can be taken 
on the first-order terms, and give results in agreement with (2.9)-(2.13), to 
o(v,). 
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2.3. C o n n e c t i o n  to a Complex  " 'Time" 

Recently, Sokolovski and Baskin (7) proposed a formal generalization 
spent in a region of space to the quantum domain of the classical time %~ 

s For  one-dimensional motion, they wrote the classical time as 

v~[x(t)] = f,'s dt ~,I- dx 3(x - x(t)) (2.14) 
hi 

where x(t) is the classical path from the initial point xi(ti) to the final one 
xf(tf). They proposed the quantum generalization of (2.14) as the path 
integral average (see, e.g., ref. 8) 

Q 
ZQ(Xi, ti; Xf, tf) = <Tcl[ 'X( ' )]  >paths (2.15) 

Sokolovski and Baskin showed that ~a is, in general, complex, and stressed 
the fact that it is a nonunique generalization of the classical time. In our 
opinion, their construct can only be given physical meaning through con- 
nections to concrete model situations. In ref. 7, one example was offered: 
The real and imaginary parts of ra  are closely related to local Larmor 
,,times.,,(<9 11) 

Here we point out that the connection (7) between r ~ and the 
oscillating barrier is quite general. In ref. 7, Sokolovski and Baskin gave the 
following expressions for their complex times in the context of particles 
with fixed energy E transmitted or reflected by a barrier, 

r~r=ihladx631;(Ax;; "c~=ihladx 31nB~ (2.16) 

where f2 stands for the barrier interval (-d/2,  d/2). Comparison with 
(2.13) shows that, with V~(x)= Vi = const, but for general Vo(x ), one has 

B (~ V A(-+~ --i V, .a. +1 . 1 a (2.17) 
A o ~ zv '  t~ = - t - - ~ v ,  

�9 a and a have a direct physical interpreta- Thus, the complex "times" z r ~R 
tlon as relative sideband amplitudes for the oscillating barrier in the co ~ 0 
limit. 

3. T H E  C H A R A C T E R I S T I C  F R E Q U E N C Y  

3.1. The  Opaque  Barr ier  

Even for a rectangular barrier to  O ( g l )  , the results (3~ (A.1) and (A.2) 
for the sideband amplitudes are sufficiently complicated that a charac- 
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teristic frequency separating the high- and low-frequency regimes is not 
immediately apparent. However, for the important case of opaque barriers, 
i.e., when e x p ( - 2 x d )  ~ 1 (with h2~c2/2m = V o - E), the relative intensities of 
the transmitted sidebands simplify to (3) 

Ir+l(e))= /1+1 2 (  V1 ,]2 [exp(_+e)r~L)_l ]  z 
- a o  - \2h- -~ )  

(3.1) 

BL= md/hx (and it has been assumed that he) is small compared to where ~ r 
E and V o - E ) .  The characteristic frequency is clearly coc = 1/zBr I~ in this 
case. It determines the low-frequency limit through 

IT~(o)=(V~zBrI') 2 (3 .2 )  
\--57---] 

and also the sideband asymmetry 

F(e)) = Iv+ l - It- 1 _ tanh e)r~h (3.3) 

For general barriers, Btittiker and Landauer (3) take (3.2) as the definition 
BL the of the time T BL (here: for transmission). We shall call z~ L and rR 

Bfittiker-Landauer times. 
BL is clearly the characteristic time In the sense defined by (3.1)-(3.3), r r 

here. The question remains whether this time must, or can, be interpreted 
as the duration of the tunneling process. In order to answer this question, 
we shall consider some other simple cases which can be discussed explicitly 
to varying degree. 

On the basis of the general results (3) for rectangular barriers quoted in 
Appendix A, it is clearly possible to expand I r l (e) )  and the relative 
sideband intensities for reflected particles I ~ ( e ) )  to O(e)). Even for 
rectangular barriers this is a tedious task, with complicated results. Before 
proceeding to other cases, we quote the result for reflection from opaque 
barriers: 

1 
I~- l(e)) = ( V1 z]L'~2 (1 -1- 2 e)~ ) -  \ 2 h i  - (3.4) 

where 

z~i. 2mk h (v_oE__E) 1/2 2m h (3.5) 
- h x ( x 2 + k 2 )  - V o  ; r'~-hK2 V o - E  
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3.2. Transparant Barriers 
We now turn from opaque barriers to the opposite extreme, trans- 

parant ones, for which x d ~  1. This case covers two distinct possibilities 
(see Fig. 2). Either the barrier is thin, and xd and kd are small for all 
energies, E < Vo. Or x is small, i.e., the energy almost equals the barrier 
height. The quantity kd should then be treated as of O(1). We shall give the 
relative sideband intensities for the latter case. Results for thin barriers can 
be obtained from these by keeping lowest order terms in kd only. 

Straightforward but tedious expansion of (A.1) and (A.2) with x d ~  1 
and kd= O(1) gives 

(V lmd)  2 1 + ~ ,2+ (1/36)q4 
ff+l(~o) - = \2h  hk/  1 + �88 [ 1  - T - ~ o ~ k 0 ( . ) ]  

1 + ~ ,2+ ( 1 / 9 0 ) , 4  (13/360),6_ (7/4320),8 
0(q) - 1 + (11/12), 2 + (7/36), 4 + (1/144), 6 (3.6) 

1. 2 ..}_ 1 . 4  IR+I(e~)=(V, 2m 2 1 + g ,  
22h h(~2+k 2) �88 [1 -T- ~ozkp(,)] - 1 +  

1 + �89 + (41/360)~/4 + (1/180),6 _ (1/270),s 
P(") - 1 + (7/12), z + (7/36), 4 + (1/36), 6 (3.7) 

where r/= kd and ~ = h/E. The factors O(kd) and p(kd), which are exact 
consequences of (A.1) and (A.2), are correcting rk as the characteristic time 
associated with the sideband asymmetries of (3.6) and (3.7). These factors 
are shown in Fig. 3. For comparison, the factor �89 correcting rk as the 

BL= md/hk in the sideband amplitude in (3.6), is also characteristic time r T 
shown. In (3,7) the sideband amplitude is determined by zk for "all" k (i.e., 

k > "]ko 

-d/2 d/2 

ko 

-d/2 d/2 

Fig. 2. 

(a) (b) 

Different limits for scattering off transparent rectangular barriers. ( a ) k d , ~ l .  
(b) kd~ 0(1 ). 
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I I . . . .  ' 

' ' ' ' . . . .  ' ' ' i/2 kd~ 

4 

6 . . . .  I . . . . . . . .  L . . . . .  ! , , , i  
0 1 2 3 4 5 

k d  

Fig. 3. The factors O(kd) and p(kd) of Eqs. (3.6) and (3.7), giving the corrections to r k as 
the characteristic time associated with the sideband asymmetries in the case of transparent 
barriers. The factor �89 correcting rk as the characteristic time rBrL = md/hk, in I~_1(0 ), is also 
shown. 

to the extent that  ~c ~ k). These results for thin barriers indicate, as do (3.4) 
and (3.5), that  no simple general relation exists between the time constants 

BE and BE Z r Z R , as found from the ~o--* 0 limits in analogy with (3.2), and the 
characteristic times associated with the sideband asymmetry.  As is apparent  
from (3.6) and (3.7), even the sign of this asymmetry  changes. Figure 3 
shows that  O(kd) and p(kd)  go negative at kd~-2.1  and k d ~  2.8, respec- 
tively. Note,  furthermore, that  the Bt i t t iker-Landauer  time for transmission 

BL of (3.7) tends to h/Vo in (3.6) tends to zero with d as d ~ 0 .  However,  rR 
as d--*0, in conflict with an interpretation of  r ]  L as the durat ion of a 
tunneling process. 

3 .3 .  T h e  6 - F u n c t i o n  B a r r i e r  

Except for transmission th rough  an opaque  barrier, where the full 
4requency dependence (within the range where he) is small relative to E and 
V o - E )  was given by (3.1), all these cases were examined to O(co) only. 
For  an unambiguous  determinat ion of a characteristic frequency, this is 
clearly not  sufficient. We therefore turn to the oscillating 6-function barrier, 
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for which the entire frequency dependence of the sideband intensities can 
be calculated explicitly. As an interesting contrast, Elberfeld and Kleber (121 
have recently constructed exact results for time-dependent scattering off a 
stationary 6-function. 

Starting from the rectangular barrier on the interval (-d/2,  d/2), with 
oscillating height Vo + V1 cos ~ot, we let d ~ 0, Vo ~ o% and V1 ~ oe in 
such a way that 

Vod=hco; Vld=h q (3.8) 

with Co and Cl (for convenience chosen with the dimension of velocity) kept 
constant. The Schr6dinger equation reads 

[ h2 632 1 63 
2m 63x 2 ~- h(co + cl cos cot) a(x) ~(x, t) = /h  ~ ~'(x, t) (3.9) 

In this limiting case, the boundary conditions are as follows. 

1. Continuity of the wave function in x = O: 

lim ~ ( - 5 ,  t) = lim g(e, t) = ~(0, t) (3.10) 
* + 0  e ~ O  

2. A finite jump in the derivative of gt in x = 0: 

lim (63gqe, t) c?gt(-e, t)) 2m 
~ o \  -~x 63X =~-(Co+ClCOSCOt)~t(O,t) (3.11) 

AS always, modulation quanta he) can be absorbed or emitted in the 
barrier. The wave function must therefore have the form 

f o r x < 0 :  

f o r x > 0 :  

( i )  
~ < ( x , t ) = e x p  ikx--~ Et 

( ; )  + ~ B ,  exp - i k ,  X--h E~t 
n 

( / )  gt>(x, t ) = ~ A ,  exp ik, x - - ~ E , t  
t2 

(3.12) 

(3.13) 

with E, = E + nhco, and kn = k( l + nhco/E) 1/2. The 
(3.10) immediately gives the B n in terms of the An: 

1 + B o = A  o 

B . = A .  (n=~O) 

continuity condition 

(3.14) 

(3.15) 
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The condition on the derivative (3.11) gives 

ik~Ane (i/h) e , t_  ike (~/h) Et + ~ ik, Bne-(~/h) E,t 
n n 

= 2 ~ _ [ C o + 2 ( e ~ t + e - ~ t ) ] ~ A ~ e  (~/h)E.t (3.16) 

From these equations we obtain an infinite set of coupled equations for the 
amplitudes An: 

m I r ] i k n ( A . - 6 ~ , o ) = ~  coAn+-~(A~+~ +An ~) (3.17) 

Define the discrete Fourier transforms 

n 

fl(s)= E k ,  A ,e  -i"" 
n 

With (3.18) and (3.19), Eq. (3.17) transforms to 

(3.18) 

(3.19) 

m 
i~(s) = c~(s) -~ (Co + Cl cos s) + ik (3.20) 

Even for the oscillating 6-function barrier a complete solution of the 
set of equations (3.17), or equivalently, (3.20), seems difficult. However, we 
are mostly interested in two cases: ( i )The co ~ 0 limit to all orders in Cl, 
which serves as an illustration of the results in Section 2. ( i i )The full co 
dependence of the first sidebands, to 0(cl). 

When co ~ 0, (3.18) and (3.19) give ~(~176 and (3.20) then 
yields 

l 

Inverse Fourier transformation gives (introduce z = e is and use the calculus 
of residues) 

A (o) _ S 
ds 

+n - _ ~ ~ a(~ cos ns 

1 ~ "[1 -(1-~2)1/2]" 
= 1 + ico/v (1 -- ~2)1/2 (3.22) 
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with ~ = q / ( i v  - Co). Since ( r _+1 always, this solution is valid for any cl. 
Equation (3.22) contains, for example, the depleted intensity at the original 
energy, ] A ( o ~  2] ~, to all orders in c~, and the 
leading sideband intensities ~e~2n. 

More interesting from our present perspective is the complete ~o 
dependence of A+I,  to O ( q ) .  From (3.17) one readily derives that 

2 (  h~ ) -1 . v A+I 2 1 +27  -4(v2+cg) (3.23) 

IRI(~O)= B+I 2 ( v )  2 
- -B~-ol = 7o Ir-+ '(m) (3.24) 

BI. defined from the co--+0 limit of IT+I(C0) vanishes with d, as The time r r  
one would expect for the duration of a tunneling process. On the other 
hand, the sideband asymmetry follows from (3.23) as 

F(co)=_Ir+l -  Ir_~ _ he) (3.25) 
- ;T-7 I~_ 1 E +  1 2 I + ~ ~mc o 

The characteristic frequency associated with (3.25) is clearly finite. In spite 
of what the result (3.1) for transmission through opaque barriers might 
lead one to believe, the example of the oscillating a-function barrier shows 
unambiguously that no direct relation exists between the characteristic 
frequency and the duration of tunneling. 

3.4. Physical Interpretat ion and Existence of a 
Characterist ic Frequency 

Biittiker and Landauer introduced co c as an estimate of the frequency 
at which the asymmetry in the sideband intensities becomes appreciable. In 
order to quantify this concept, we define co c as 

]F(COc)[ = tanh 1 = 0.76... (3.26) 

In taking the absolute value of F, one can use the same definition for thick 
and thin barriers [see (3.3) and (3.25)]. Clearly, the above definition is not 
the only possible one. Nothing dramatic happens with the asymmetry at 
a)=o) c. We have chosen (3.26) since it is the definition which yields 
co~-1 = r~I. (asymptotically) for thick barriers, in agreement with Biittiker 
and Landauer's result. However, changing the definition quantitatively 
does not affect the qualitative points we want to make in the following. 

The physics which determines the asymmetry also determines e) c. As 
pointed out by Biittiker and Landauer, in the case of opaque barriers 
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co c is completely determined by the energy sensitivity of the tunneling 
probability T ( E ) =  ]Ao(E)[ 2. In the opposite extreme, the 5-function result 
(3.25) shows that, when Co ~ 0, no property of the barrier itself remains. 
The sideband asymmetry is then determined by the density of states alone. 
The minus sign in (3.25) reflects this dependence, since the density of states 
wE-l /2 in that case. 

In going from thick to thin barriers, the asymmetry changes sign. One 
can therefore expect an intermediate region where the asymmetry depends 
only weakly on ~o. In this region the sideband asymmetry will be small even 
for hco>E.  Since I T 1 = 0  for h o ) > E ,  (13) a definition of a characteristic 
frequency in terms of the sideband asymmetry F(co) is no longer possible. 
This is shown in Fig. 4, where we have plotted 1/o) c versus barrier width for 
an oscillating A1GaAs barrier between ideal GaAs leads. For comparison, 

BL -1 O(d  1). The chosen energy, BL is also shown. For large d, z r - co  c = "E T 

E=0.5V0=0.115 eV, is, in fact, not very realistic. In order to have a long 
inelastic mean free path in the leads, the energy should be below the optical 
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Fig. 4. Compar i son  between the inverse characteristic frequency o ) 1  and the Btittiker- 
Landauer  time for transmission z~. L in a GaAs/A1GaAs/GaAs structure, o) c is defined by 
I(I~ 1 - I r t )~(IT+ 1 + I r  t )1 . . . .  = tanh 1 = 0.76.... Fo r  our  choice of energy (E = 0.115 eV), c% is 
,not defined in the d interval (11/~, 55 ~).  Note  that since E has been chosen as �89 Vo, the slope 
of z~- L is the same for small and large d: m/hk and rn/h~, respectively. However,  zar L is not a 
straight line. 
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phonon emission edge at 0.04 eV. For E =  0.04 eV we find a lower bound 
on the barrier width of about 165 ~. This lower bound can be estimated by 
noting that hco ~. ~ h/TBr L ~ h2~c/md for opaque barriers. Thus, 

From Fig. 4 we see that a characteristic frequency can again be defined for 
very thin barriers below d ~  7 ~ for E =  0.04 eV. The interval (7 A, 165/i) 
covers essentially all barriers of practical interest. One could use a smaller 
value for If(~c)l, or consider defining co c on the basis of the upper 
sideband alone. That would reduce this interval somewhat, but the 
qualitative conclusion would remain: No meaningful definition of coc can 
be made for barriers of intermediate thickness. 

In the limit d ~ 0, co c remains finite. We therefore conclude that, even 
when it exists, the characteristic frequency of an oscillating barrier in 
general does not give the duration of the tunneling process. 

4. C O N C L U D I N G  R E M A R K S  

In this paper we have generalized the Biittiker-Landauer model to 
arbitrary oscillating barriers, and in the process confirmed that the 
methods used in ref. 3 are technically sound. We have also shown that4he 
characteristic frequency associated with the sideband asymmetry cannot in 
general be interpreted as an intrinsic tunneling time. 

We have not, however, discussed the merits of the Biittiker-Landauer 
BL determined from the low-frequency limit of the first sidebands. As time r r 

is argued in a parallel review, (6) the Biittiker-Landauer time z~ I-, along 
with every other proposed expression for the duration of the tunneling 
process itself, meets some, but not all, requirements one must impose on 
such a time. In our opinion, the only t i m e s  that have a precise (and com- 
plementary) meaning in this context are (i)the asymptotic phase times for 
transmission and reflection, which describe completed scattering events 
involving wave packets, and include self-interference delays in addition to 
tunneling times p e r  se, and (ii) the dwell time, which can be defined locally, 
but which does not distinguish between scattering channels. For an exten- 
sive discussion of these issues, the reader is referred to ref. 6. 

APPENDIX  A. THE OSCILLATING RECTANGULAR BARRIER 

For the rectangular oscillating barrier, Biittiker and Landauer (3) 
derived the following expressions for the first sidebands, to O(V1) (note 

822/57/3-4-28 
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that in ref. 3, A is used as amplitude for reflected particles, D for trans- 
mitted, and that overall _+ signs are missing in their formulas): 

+I/1 Ao(k,x) e i(k k++-l)(d/2){ls 
A •  = --h(D O ( - k ~ l ~  K~-~I ) 1 _~ 

- (to 2 - k k + l )  re-+1 sinh ~d+ i~c+l(k+k+_l) 
K 

x d - c o s h  x+_ld)} (A.1) (cosh • 

B+~(o) = + V~ Ao(k, ~) ) ei(k_k+~)(a/2) {(tc21+kk+1)sinh x+~dcosh xd 
- - h g o D ( k + l , t r  . . . .  

_ (~:2 +kk+_l) x+_l cosh x+lds inh  x d -  iK+l(k- k+_l) 
tr 

x (1 - cosh tc + 1 d cosh Kd) 

<+ ) } - i l_k_+lx s inhKdsinhtc+ld (A.2) 

2 Here k2= 2mE/h 2, k ~ l =  2m(E ++_ho)/h 2, x2= 2m(Vo-  E)/h2, and x_+l= 
2m( V o - E-T- hm)/h 2. Furthermore, 

D(k, to) = 2(x 2 - k 2) sinh x d -  4ikx cosh xd (A.3) 

and Ao = -4ikxe-ikdD(k, x) ~ is the transmission amplitude for the static 
barrier Vo. One assumes throughout that E + h o  < V o and E-hco >0. 5 
For the opaque barrier, e x p ( -  2Kd) ~ 1, the amplitude of the transmitted 
sidebands is given by 

_ VI md 
A_+I = + 2 - ~  Ao exp (T- i 2--~ co) Iexp ( +  o ~-Kd) -- 1] (A.4) 

Here one has, in addition, assumed that hco is small compared to E and 
V o -  E. This gives the relative sideband intensities for transmission as 

A+, 2 ( v , ) 2  
- T o  \2h~o} [exp(___coz~ L ) -  1] 2 (A.5) 

5 Although the formulas apply equally well for energies above V o, with trivial changes, and 
for the case of dynamical localization, E--  h~o < 0. 
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BL= md/hlc. The low-frequency limit is with z r 

f V1 r~L'] 2 (A.6) 1(o9 - ,  0 )  = 

For general barriers, B/ittiker and Landauer define z~ L by the relation 
(A.6). Evaluation for a general rectangular barrier yields ~3) 

BE m ~(~c2-k2)~c2d2 +k~(l +~ZdZ)sinhZ~cd+k2o~cd(K2-kZ)sinh2~d~ a/2 
Z T = ~ 2  L 4k2tr 2 + k~ sinh 2 ted 

(A.7) 

Here kg = 2m Vo/h 2 = ~2 + k2. 

APPENDIX B. THE PERTURBATION SCHEME 

In this Appendix we study the perturbation series generated by (2.5), 
in powers of V~ for arbitrary o9. We first show that the scheme is well 
behaved. Subsequently, a second expansion is made in powers of o9. The 
o9~0  limit of Section2 is recovered to O(V~). Corrections of O(o9) are 
discussed qualitatively. 

B.1. The V1 Expansion 

In Section 2, we showed that the time-dependent Schr6dinger equation 
decomposes into the infinite set of coupled equations (2.5): 

[Ho - (E+ nho9)] O,(x) = - 1 V I ( X ) E O n +  1(x) ---[- Cn--l(X)] 

In this Appendix we assume, for simplicity, that Vl(x)= S(x) VI, with V1 
constant, and S(x)= 1 for Ix] < d/2, and zero otherwise. [For a generaliza- 
tion to arbitrary Vdx), one divides the interval ( -d/2,  d/2) into N pieces 
and takes the limit N ~  ~ .  As a result, functional derivatives replace 
ordinary ones in the final expressions.] From the structure of the above 
equation it seems natural to try a perturbation expansion in the dimen- 
sionless parameter VI/E: 

~b,(x)= E ~b~k)(x) (B.1) 
k>~O 

This leads to the recursive perturbation scheme 

[H  o --(E + nho) ] (~k) = -S (x )  E r,h(k- ,) 2 Lv.+~  "~-~(k~ll)] (B.2) 
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with "initial" condition 

Hi(o) (E + ntic~) (b(o~ OtP n = 

which for our case specializes to 

~(.~ ~o6.,o (B.3) 

To O(V ~ we have the static, unperturbed problem HoqSo=Eq~ o with 
solution 

I: eikX + Bo e -ikx 

II: 3o+Fo 

III: Ao eikx 

(B.4) 

where I-III refer to the different regions of space in Fig. 1. The two linearly 
independent solutions of the unperturbed problem in region II are 3o and 
F0. The amplitudes absorbed in 3o and Fo are, like Bo and A0, determined 
by the boundary conditions. 

B.2. Proof That  the Scheme Is Well  Behaved 

Inhomogeneous equations like (B.2) are only meaningful provided 
that the inhomogeneity is orthogonal to the solutions of the corresponding 
homogeneous equation. In our case, this translates to a requirement that, 
in region II, the inhomogeneity has the form 

q~(k- 1) _.k ,~(k-- 1) (o~(k 1)~ (k n + l  "t'n--1 ~- Z , - n . p  --n +pAt- f ln ,  p 1) / ' n+p)  
p~0  

(B.5) 

where 3m and Fm are suitably normalized solutions of [ H o -  
(E+mhco)] 71=0, and the a's and fl's are constants. We therefore need a 
general proof that, in our perturbation scheme, the dangerous terms ~n 
and F,  are missing on the right-hand side of (B.5). 

With the zeroth-order solution given as ~b o = 3o + Fo, the structure of 
the iteration scheme (B.2) is shown in Fig. 5. The node (n, k) represents 
the wave function r i.e., the O(Vkl) contribution to the nth sideband. 
According to (B.2), the contribution at each node consists of a particular 
solution generated by the two neighboring nodes at the previous level, plus a 
homogeneous part generated at the node itself (with coefficients determined 
by the particular solution and the matching conditions). What one needs 
to prove is that a homogeneous solution at (p, q) does not generate a 
corresponding inhomogeneity in the equation for the contribution at 
(p, q + 2/). 
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t A A ~  
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Fig. 5. Structure of the perturbation scheme. The nodes (n, k) represent the wave functions 
~k), i.e., the O(V~) contribution to the nth sideband. 

First note that no dangerous inhomogeneity exists in the equation for 
0~(o 2~. This follows from the fact that (B.2) gives the particular solution q~(~)~P 
as ~]P +(E/2hc~) q~(o ~ and thus ,~(l~p +,~(1)p= 0. We use this as a basis 

_ "~" -- WI W --I 

for a proof by induction. Assume that no term ~ ql o exists in the equation 
for r ak) (true for k = 1). We proceed to show that it must be true also for 
the equation for ql(o 2k+2). The relevant inhomogeneity is the sum of the ~b 0 
contributions at the nodes ( - 1 , 2 k + l )  and ( 1 , 2 k + l ) .  The first is 
generated by a sum over paths down the left half of the network, starting 
at (0,0) and terminating at ( - 1 , 2 k + l ) .  By assumption, these paths 
cannot pass through points with n = 0 below the source (0, 0). Since n < 0 
at every node, each step [see Eq. (B.2)] carries a minus sign. For  every 
path, the number of steps from (0, 0) to ( - 1, 2k + 1) is 2k + 1, so that all 
contributions from paths on the left are negative. Conversely, all paths 
from (0, 0) to (1, 2 k +  1) are to the right of n = 0  and give positive con- 
tributions. By symmetry, every path to the left has a mirror image to the 
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right. Consequently, the sum over all contributions vanishes. This proves 
that the homogeneous solution at (0, 0) does not generate a corresponding 
inhomogeneity in the equation at (0, 2k). But the above argument is inde- 
pendent of the location of the source. It therefore also shows that the 
homogeneous contribution at (p, q) does not generate a corresponding 
inhomogeneity at (p, q + 2/). This completes the proof that the perturba- 
tion scheme is well behaved. 

B.3. The r Expansion 

We now return to (B.2) with the aim to understand the low-frequency 
behavior of 

[H  0 (E___ h~)]  ,~(1) -S(x)  E --  v i i  = ~b0 (B6) 

The solutions are 

I: B(1)1 

1 E  
Ih ~b~] ,,~(1)h ~ (1)lp _ = ~ •  + :C~]Z+I+D(~]F+I++-~-~--~Oo 

IIh A~]e ik+-lx 

(B.7) 

Here N_+I and F_+I are the homogeneous solutions to the stationary 
problem under the barrier, at energies E_+ he). The particular solutions 
~b{~)~ p are found by inspection. If we also take he)/E to be a small parameter, 
we can expand around the unperturbed problem at energy E. Since ~b(~] p = 
O[(hco/E)-i], the expansion of the coefficients must be 

A(-1) = A(+1'11)-"+1 - E A(~'?)+ "'" (B.8) 

and similarly for B, C, and D. Furthermore, one has 

hco c~S o 
=' = ~ o  + n E  F- (B.9) ~ n  

E c~E 

wth an analogous expansion for F , .  The wave functions in regions I and 
III can be explicitly expanded 

e+-ik'X=e +-ikx 1+_ n _(k2x2+_ikx)_~ --. (B.10) 
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In expanded form, (B.7) reads 

171 (1, i ) o  i kx  -1-- �9 i k x B ( l + ' l  ) - ikx  I:  u _ + l  ~ _ B o ) _ + ~  _ e + . . .  

I I :  ( ~ )  I[(c(I+'11)-[-~)Z,o+(D(I'FI)}-~)Fo] 

1" aZo + D~,I- 1)E @~_ ~ 

(7)1 ( ) 
III: AO,-OeikX ,o) l +1 + AO+ +_~ikxA(1, 1) eikX+ ... 

_ + 1  

(B.11) 

+ ... 

In (B.1I), the matching conditions at x =  +_d/2 must be applied order by 
order in hco/E. To O[(ho~/E)-l], the resulting system of homogeneous, 
linearly independent equations for the coefficients has the trivial solution 
only: 

A(~'~ 1 )=  B(~'t - 1 ) =  0 
(B.12) 

C(~'V 1) = n(~'~ 1)= -T-1/2 

in agreement with the result in Section 2 that the (n---, 0 limit is finite. 
Using (B.12), one finds that the O[(hco/E) ~ wave functions simplify to 

I~ J~(1,O)o ikx  
U •  

f-O,0)~ • n(x,o)r 1 II: 'J+_t =om~ '+ l  - - o - ~  E (B.13) 

III: ~(~'~ ~_+1 

where the four coefficients are determined by the boundary conditions. 
Knowledge of the solution to the unperturbed problem thus enables us to 
calculate corrections due to the perturbation. 

It is not entirely trivial to see how the simple result of Section 2 for 
the ~ o ~ 0  limit follows from (B.13). We first note that the form of the 
wave function in the barrier only depends on the difference V(x) - E. As far 
as the form is concerned, a small increase 6E in E is equivalent to a small 
uniform decrease 6V in V(x). One could therefore be tempted to replace 
~Oo/~E in (B.13) by -O(%/OV, where differentiation is with respect to a 
uniform shift in V(x). This would not be correct, however. The amplitudes 
of the wave function inside the barrier are coupled to the functions outside 
through the matching conditions at x =  +_d/2. We therefore separate 
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prefactors from functions, ~ and 7, with normalization fixed by a given 
value at, say, x = O, and write 

Oo=•o+ Fo=C(E, V - E ) ~ ( x ;  V - E ) + D ( E ,  V i E ) y ( x ;  V - E )  (B.14) 

so that 

d E -  \OVJE +-~ - ~  v Em~ D \ O E J v - E  F~ (B.15) 

The second line in (B.13) can therefore be written as 

II: 
"~ +_1- 2---C - ~  v - u Z~ ---2D ~-E v - e F~ 

1 (&bo'] 
+ ~ E (B.16) \or)= 

With the form (B.16) in region II, we can now compare (B.13) with 
the static solution (B.4), differentiated with respect to a uniform change in 
V, at constant E: 

OBo -ikx 00o ~_~ 
I: - ~ e  , II: 0V '  III: e ~kx (B.17) 

Clearly, the square brackets in (B.16) must vanish. That determines the 
coefficients r-~l,0) and D~ '~ What remains is, apart from a constant '~+1  
prefactor, O0o/dV in all three regions, in agreement with the results of 
Section 2. Reinstating the factor V1/E from (B.1), one finds, in particular, 
the transmitted sidebands in the ~o ~ 0 limit as 

V1AO.O)_ VI 0Ao 
A~~ E +1 2 c3V (B.18) 

which is a special case of (2.13), to O(V1). 

B.4. The O(tu) Terms 

Equation (B.11), continued to linear order in ~, and with O(r 1) and 
O(~o ~ coefficients now determined, provides the basis for a calculation of 
the coefficients A(_+x'~) etc. The computation is straightforward, but tedious, 
and the general results are complicated. We shall not quote them here, 
since their detailed structure is not particularly illuminating. Three remarks 
are nevertheless in order: (i)The results for C~ '~ and D(~ "~ from (B.16) 
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already indicate that  the O(co) terms c a n n o t  be obtained by differentiations 
of the s tat ionary solution (B.4) with respect to V alone. A combina t ion  of 
V derivatives and E derivatives is needed. ( i i ) In  fact, the O(co) terms 
cannot  even be obtained from the (forward) scattering state (B.4) alone. 
Also, the general solution of  the (backward)  scattering problem, with 
incoming particles f rom the right, is needed to construct  the O(e)) terms. 
(iii) I t  is not  surprising that  new physics enters in higher order  terms. A 
striking illustration of this is provided by the dynamical  localization effect: 
With he) > E, localized states, in which the particles remain for a finite time 
only, exist already to O(VI),  as pointed out  by Biittiker and Landauer.  (3) 
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